

Back to basics

Kristian Lyngstøl
Product Specialist

Varnish Software AS
Twitter: @kristianlyng

Montreal, March 2013

Or: How that new fancy hammer isn't necessarily
the solution.

Kristian who?

- GNU/Linux user and developer of many
years.

- Mostly work in C and shell-related stuff

- Frequently also work with Python and Java

- Worked on Varnish Cache and Compiz

- Principal author of the Varnish Book.

- More of a system developer than web
developer.

In the beginning, there was the solution.

The solution was good. It was new. It was fancy. It
was Cool. It was proven to be fast.

People talked about it on hacker news, so it must be
awesome.

Then along came a project.

Project Spec

- Purge 2000+ objects per second, across at
least 4 different caches.

- Implement retries

- Timeout

- Give status on the success

Point of order

- Varnish itself can purge content roughly as
fast as it can look them up.

- (In other words: orders of magnitude faster
than the spec required)

- (E.g: 100k req/s for this scenario)

Solution!
Client(CMS?)

Purger MQ “Agent” Varnish

HTTP

HTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

“Agent” VarnishHTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

“Agent” VarnishHTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

Solution details

- The MQ was async

- But we needed to report status?

- And retry!

- Solution 2: Scoreboard, and callback when
complete.

Solution!
Client(CMS?)

Purger MQ “Agent” Varnish

HTTP

HTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

“Agent” VarnishHTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

“Agent” VarnishHTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

Scoreboard:
Agent 1: ?
Agent 2: OK
Agent 3: FAIL

Next iteration:
Client(CMS?)

Purger MQ “Agent” Varnish

HTTP

HTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

“Agent” VarnishHTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

“Agent” VarnishHTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

Scoreboard:
Agent 1: ?
Agent 2: OK
Agent 3: FAIL

Step 0: WHAT are we trying to
do?

- Turn 1 HTTP request into X HTTP requests,
possibly retrying on failure.

Step 1: What is the ideal way to
solve this?

At this point, you should pretend you do not know
anything about existing solutions.

“If I had infinite time, this is how I would do it.”

Step 2: Introduce reality

What products exists? What solutions are feasible?

Looking back:
Client(CMS?)

Purger MQ “Agent” Varnish

HTTP

HTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

“Agent” VarnishHTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

“Agent” VarnishHTTP“Agent” VarnishHTTP“Agent” VarnishHTTP

Apply KISS:
Client(CMS?)

Purger Varnish

HTTP

VarnishVarnishHTTP

VarnishVarnishVarnish

VarnishVarnishVarnish

“JDI” solution:

- Speaks HTTP directly to Varnish.

- 1 connection to the purger = 1 connection to
each Varnish server.

- 1000 connections to the purger = 1000
connections to the Varnish servers

- Authorization mostly handled by Varnish

You are not done when there is nothing more to add.
You are done when there is nothing more to

remove.

Trinkle with magic!

- The code working with varnish is completely
isolated from the code talking to clients

- Jetty proved too slow for us. We rolled our
own HTTP daemon for this particular
purpose (This is on the KISS kill list)

- Test test test test

Lab: 60 000 purges/sec across 4 caches

Production: ~600 purges/sec across 4 caches

Why the difference?

Dig down!

- The solution certainly could be faster.

- Something changed!

- Dig down.

The devil is in the details

- Lab latency: ~0ms

- Production latency: ~20-30ms

- 25ms RTT can provide 40 synchronous
transactions/sec over 1 connection

- Hmm......

- Our tread pool was hard coded to maximum
16 worker threads.

- 16 * 40 = 640.

Up the thread pool to 1000 threads. 1000*40 = 40
000 transactions/s theoretically.

We measured about 20k/s successfully without
trying very hard.

Mastering the “low” level stuff allows you raise the
bar on what's possible. If you don't know how to
do it yourself, don't use a library or framework.

Compete !

- If in doubt, consider implementing a PoC of
two or more competing solutions. Set a strict
deadline, and evaluate.

“Bad solution”

- Complex, therefor slow

- Complex, therefor prone to bugs

- Complex, therefor harder to maintain

- Introduced third party external dependency
without any clear benefit.

- Not designed to fit the problem, but designed
to fit the solution.

“Better” Solution

- Simple, thus fast

- Does exactly what's needed, but not more

- Designed to fit the problem, not the solution.

Do one thing and do it well.

NOT just a UNIX philosophy, but programming.
Anything else is scripting.

Unused code is broken code.

Untested code is subtly broken code.

Example: Varnish Agent 2 has 287 tests for 6k
LOC.

Even the simplest tests are useful.

The cost of writing a test case is negative.

The Rise of “Worse is better”

http://www.jwz.org/doc/worse-is-better.html

http://www.jwz.org/doc/worse-is-better.html

Summary

- Analyze the problem without mentioning a
solution

- Think up an ideal solution, without picking
technology

- Look around for technology that matches or
comes close to your ideal solution

- Keep whacking away at your solution until
there is nothing more to remove.

Contact information

Kristian Lyngstøl

kristian@bohemians.org

http://kly.no/

@kristianlyng

https://joind.in/7982

mailto:kristian@bohemians.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

